Search results for "general methods"

showing 2 items of 2 documents

New physics in $B$ meson mixing: future sensitivity and limitations

2020

The mixing of neutral mesons is sensitive to some of the highest scales probed in laboratory experiments. In light of the planned LHCb Upgrade II, a possible upgrade of Belle II, and the broad interest in flavor physics in the tera-Z phase of the proposed FCC-ee program, we study constraints on new physics contributions to Bd and Bs mixings which can be obtained in these benchmark scenarios. We explore the limitations of this program, and identify the measurement of |Vcb| as one of the key ingredients in which progress beyond current expectations is necessary to maximize future sensitivity. We speculate on possible solutions to this bottleneck. Given the current tension with the standard mo…

BELLE: upgradeLHC-B: upgradeParticle physicsMesonPhysics beyond the Standard ModelFOS: Physical sciences01 natural sciencesAtomicStandard ModelHigh Energy Physics - ExperimentPhenomenological aspects of field theoryHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theory0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B mesonNuclearmeson: mixing010306 general physicsMixing (physics)PhysicsQuantum Physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixhep-exMolecularhep-phFCC-eesensitivityNuclear & Particles Physicsgeneral methodsHigh Energy Physics - PhenomenologyUpgradeCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentluminosity: highAstronomical and Space Sciences
researchProduct

Euclid preparation : XXII. Selection of quiescent galaxies from mock photometry using machine learning

2023

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15 000deg2 of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of quiescent galaxies using broadband Euclid IE, YE, JE, and HE photometry, in combination with multi-wavelength photometry from other large surveys (e.g. the Rubin LSST). The…

galaksitluokitus (toiminta)koneoppiminenphotometrygalaxiesevolutionfotometriastatisticalgeneral methodshigh-redshift
researchProduct